Exercise 22

For the following exercises, consider an athlete running a $40-\mathrm{m}$ dash. The position of the athlete is given by $d(t)=\frac{t^{3}}{6}+4 t$, where d is the position in meters and t is the time elapsed, measured in seconds.

Compute the average velocity of the runner over the given time intervals.
a. $[1.95,2.05]$
b. $[1.995,2.005]$
c. $[1.9995,2.0005]$
d. $[2,2.00001]$

Solution

The average velocity is calculated by

$$
v_{\mathrm{avg}}=\frac{d\left(t_{2}\right)-d\left(t_{1}\right)}{t_{2}-t_{1}} .
$$

Over the interval $[1.95,2.05]$ the average velocity is

$$
v_{\mathrm{avg}}=\frac{d(2.05)-d(1.95)}{2.05-1.95}=\frac{\left[\frac{(2.05)^{3}}{6}+4(2.05)\right]-\left[\frac{(1.95)^{3}}{6}+4(1.95)\right]}{2.05-1.95} \approx 6.0004167 .
$$

Over the interval [1.995, 2.005] the average velocity is

$$
v_{\mathrm{avg}}=\frac{d(2.005)-d(1.995)}{2.005-1.995}=\frac{\left[\frac{(2.005)^{3}}{6}+4(2.005)\right]-\left[\frac{(1.995)^{3}}{6}+4(1.995)\right]}{2.005-1.995} \approx 6.000004167
$$

Over the interval [1.9995, 2.0005] the average velocity is

$$
v_{\text {avg }}=\frac{d(2.0005)-d(1.9995)}{2.0005-1.9995}=\frac{\left[\frac{(2.0005)^{3}}{6}+4(2.0005)\right]-\left[\frac{(1.9995)^{3}}{6}+4(1.9995)\right]}{2.0005-1.9995} \approx 6.00000004167 .
$$

Over the interval $[2,2.00001]$ the average velocity is

$$
v_{\mathrm{avg}}=\frac{d(2.00001)-d(2)}{2.00001-2}=\frac{\left[\frac{(2.00001)^{3}}{6}+4(2.00001)\right]-\left[\frac{(2)^{3}}{6}+4(2)\right]}{2.00001-2} \approx 6.00001
$$

